
Design Thinking implemented in
Software Engineering Tools
Proposing and Applying the
Design Thinking Transformation
Framework
Alexander Grosskopf, Mathias Weske
Hasso-Plattner-Institute, University Potsdam, Germany

Jonathan Edelman, Martin Steinert, Larry Leifer
Center for Design Research, Stanford University, CA, USA

 Abstract
Design Thinking has collected theories and best-practices to foster

creativity and innovation in group processes. This is in particular

valuable for sketchy and complex problems. Other disciplines can learn

from this body-of-behaviors and values to tackle their complex problems.

In this paper, using four Design Thinking qualities, we propose a

framework to identify the level of Design Thinkingness in existing

analytical software engineering tools: Q1) Iterative Creation Cycles, Q2)

Human Integration in Design, Q3) Suitability for Heterogeneity, and

Q4) Media Accessibility.

We believe that our framework can also be used to transform tools in

various engineering areas to support abductive and divergent thinking

processes. We argue, based on insights gained from the successful

transformation of classical business process modeling into tangible

business process modeling. This was achieved by incorporating rapid

prototyping, human integration, knowledge base heterogeneity and the

media-models theory. The latter is given special attention as it allows us

to break free from the limiting factors of the exiting analytic tools.

 1. Introduction
In this paper we propose a framework to align software engineering tools

with Design Thinking. We strive to apply paradigms experimentally

derived from Design Thinking research with the aim to transform

convergent engineering tools, designed and used for analysis, into

abductive, divergent tools. In this paper we experimentally focus on the

discipline of software engineering as it is fitting representative for many

engineering disciplines. Its tools used are designed to analyze real

problems and situations, build mathematical models based upon the

same, and allow handling those models algorithmically.

It is an early observation in computer science (Brooks 1975) that effort,

that is, time spent on development, is hard to predict. Software design is

notoriously hard to discuss, especially with end users. This is rooted in the

intangible nature of software and the very discipline specific language.

The most users can see is the user interface, which literally is only the tip

of the iceberg. To exchange deeper level knowledge about systems,

different tools for data, process and architectural modeling have been

developed. They have a mathematically defined semantics and are the

sharp knife for communication amongst engineers. These analytical tools

however can hardly be used to discuss software attributes with end users.

Consequently, software often does not meet customer expectations

(Krallmann et al. 2007).

In the last decade, the introduction of agile development as a

methodology (Martin 2003) stepped up to ease this pain. Agile

development demands that the evolving software product is constantly

presented and discussed with end users. This helps to identify divergent

expectations early on and avoids expensive misunderstandings. Agile

development is a huge advancement over original software engineering

methods, such as the waterfall or the V-model (Zhu 2005, p. 55-57).

However, agile development treats the symptom and not the underlying

problem of suboptimal early communication. Agile development has no

means of communicating conceptual decisions and its impact with

common end users, as end users are not “language and knowledge

compatible” with the specific concepts that engineers use to capture their

knowledge.

Generally tools and development behaviors employed in software

engineering aim to reduce risk and to (re-)produce a product of high

quality at predictable costs. The underlying logic roots in production line

manufacturing (Clements & Northrop 2001). It is worth noting that

management approaches for traditional product and software

development are slowly converging; both rely on classical engineering

philosophies. This includes well-defined procedures and analytical tools

to ensure validity of results by reducing uncertainty and complexity of the

problem.

Unfortunately, this formal approach to product and software development

fails to support exploration and discovery of unexpected issues. Based on

the research of what designers and engineers really are thinking and

doing, when they successfully create products, services, and enterprises, a

powerful process for innovation has emerged: Design Thinking. It

integrates human, business, and technological factors in problem -

forming, -solving, and –design. It creates a vibrant interactive

environment that promotes learning through rapid conceptual

prototyping. Figure 1 depicts design thinking as a journey through five

stages as suggested by (Leifer & Meinel 2010).

So far, the deployment of Design Thinking specific insights and

procedures for software engineering has been rather constrained

(Lindberg & Meinel 2010). Mainly the intangible nature of software, its

inherent complexity and specific language hampers user integration. Our

aim is to attempt to bridge this gap by proposing a Design Thinking

Transformation framework. With it, we aim to firstly identify and

secondly alter Design Thinking compatible software engineering tools.

Figure 1. Design Thinking is commonly visualized as an iterative series of five major

stages. To the left we see the standard form. To the right we see something closer to

reality (Leifer & Meinel 2010)

Our framework is grounded on insights gained from having extensively

studied the impact of media choice on the design process. Section two we

introduce the media-models framework as a heuristic for understanding

the convergent or divergence nature of tools. In section three, we show

how we have applied the knowledge about behavioral change induced by

media to a specific software engineering tool: Business Process Modeling.

In section four, we propose a general framework based on the results from

a series of studies, experiments, and observations. This framework is

comprised of four qualities to identify transformable engineering tools

and to highlight possible leverage points. In the final section of the paper

we conclude with a discussion.

 2. Media-Models: Steering discussions in
Team-based design

The past few years have yielded powerful insights into how to gear

analytic tools towards design thinking: Through the substitution of

analytic media tools with generative media tools designers can trigger

increased abductive activities and potential in development scenarios.

Media filters and characterizes information. Every class of instantiation of

media is different in respect to the information which is embodied in it.

Hence, media with different characteristics enables us to do different

kinds of thinking; different media afford different kinds of thought. A

prototype made of plasticine will provoke different feedback than an

computer rendered image. The choice of media characterizes the

information transmission in a similar way. Media provides affordances for

thinking and action, because it conditions how information can be

communicated and what can be done with it. Thus, we see media as an

"actant", and not just a passive container.

When people externalize knowledge they use media, whether in the form

of sound waves in the air (spoken words), e-mails or paper. Contemporary

studies in cognitive psychology have emphasized the effect of media on

what people can think about and how they think about it (Tversky 1999;

Maglio et al. 1999; Clark 2008). If media directly influences the direction,

breadth, and depth of communication, the question is how to maximize

the effectiveness of media in a given phase of product (or software)

development. The Media-Models framework (Jonathan Edelman 2009)

considers the dimensions of media and their effect on the conversations

that designers have during the development process.

Media-models can be seen as intermediary objects used during the

development and negotiation of designs, processes, products, and services

in team based design. The framework is based on field studies and

experimental evidence examining three dimensions of intermediary

objects in use by design teams: abstraction, resolution, and ease of change

(Jonathan Edelman 2009).

All models enlist abstraction. Abstraction is defined as the highlighting

and isolation of specific qualities and properties of an object, such as

color, size or functions. Fewer represented properties indicate a greater

abstraction from the actual object. Because representations with higher

levels of abstraction have fewer properties with which to contend, they are

easier for designers to work with than models with many properties. This

ease comes at a price: abstract models are not complete, but offer only a

slice of or a perspective on a product or service.

Resolution refers to the fidelity with which an object is defined with

respect to its final form. For example if a final product is a car, a Lego

model of a car would be considered low resolution. However, if the

deliverable is made of Lego and the Lego model shares the same

dimensions, than the Lego model must be considered fully resolved.

Resolution and abstraction are orthogonal properties inherent in media-

models used for communication. In figure 2 we show some sample media

in a coordinate system by abstraction and resolution.

The third dimension that media-models share is ease of change. It

refers to the amount of effort required to change an idea embedded in a

specific media-model. The resistance to change is also referred to as

viscosity by (Blackwell et al. 2001), though his focus is on dimensions of

notations, whereas the ease of change that we refer to here is a dimension

of media-models.

All three media dimensions are at play when people express their ideas in

a model. Less abstract models require designers to consider more

properties. Higher resolution models afford high precision when making

parametric changes to a model. On the other hand, abstract, low

resolution models afford global or paradigm changes.

As an example of media-model choice, a car manufacturer might build an

actual roadworthy prototype of the next generation car product. This type

of media model is highly resolved, absolutely not abstract and hard to

change. That prototype is well suited for detailed examination just before

mass production. It is not suited to question the fundamental design. In

contrast, a miniature car made of plasticine is highly abstract, less

resolved and easy to change. This type of representation might be suited

for general design discussions but does not reveal details. These two

extreme model choices showcase the contrast between “analytic” media-

models and “generative” media-models.

We call media which affords parametric change analytic media, and

media, which affords a multiplicity of potential global solutions

generative media. In lab experiments with designers we have observed

that analytic media leads people to discuss adjustments of parameters

within the design, while generative media affords discussions of the

general concept of the design. It is simply meaningless to discuss

parametric adjustments with a low resolution model. In other words,

media choice conditions communication in product design.

Figure 2. Media used in product development characterized by the media-models

framework

This effect is also implicitly known in software engineering. Best practices

for User Interface (UI) designers suggest to use sketched paper prototypes

to discuss UIs with end users rather than polished screenshots or even the

actual UI (Buxton 2007). The sketched representation abstracts e.g. from

color and does not resolve e.g. the actual size of buttons. Thus it allows the

user and UI designer to concentrate on the underlying concepts of the

human-computer-interaction. However, in software engineering, UI

design practices are an exception. Classical software engineering is

mathematically driven and committed to analytical techniques and media.

We applied our insights from the media-models theory to one particular

software engineering tool, Business Process Modeling.

 3. A Software Engineering tool transformed
Business process modeling is the act of mapping knowledge about

working procedures in organizations to a graphical representation, the

business process model. This is popular in the context of Business Process

Management, an approach to structure work in organizations (Burlton

2001). That includes modeling, analyzing and improving the working

procedures. Automating processes in software systems offers great

potential to save time, enhance reliability and deliver standardized output

(Davenport 1993; Hammer & Champy 2003). In the last decade, business

process management, and therefore also business process modeling, has

become an IT-driven topic (van der Aalst et al. 2003). IT-support for

business processes requires significant software engineering effort. As

typical for software projects, misunderstandings in early stages lead to

expensive change requests at later stages of the project (Boehm 1981).

In current practice, requirements are gathered in interviews and

workshops. Post-its and software tools dominate the employed media. In

explorative studies we observed that Post-its allow end users to easily map

their knowledge. However, Post-its do not embody concepts. Thus, the

resulting Post-it stream does not express the knowledge in the frame of a

business process. It typically requires a process analysts to collect the

information and create process models from end user input. The model is

then discussed with end users and is refined until fully accepted. Process

analysts can choose from a wide variety of modeling software that

supports language specific iconographies, syntax verification and process

automation qualities.

For novices, these are expert tools. Thus, for efficient use, modeling

software typically remains in the hands of the experts. Changes to the

model have to be channeled through them.

The limited access to the model for non-experts motivated us to change

the media for business process modeling. We aimed to empower end users

to express their knowledge as processes and directly apply changes to the

model. The early development of generative media for Business Process

Modeling included Lego, crafting accessories, and Post-its. After some

iterations we found that, acrylic tiles with process modeling iconography

sharpened the discussions of process modeling experts and domain

experts (J. Edelman et al. 2009; Grosskopf et al. 2009). The specific

iconography embodies process modeling concepts and thereby enforces

basic framing. At the same time, the rough media is more flexible than a

digital model and lifts resolution constraints. In other words, software and

logic does not restrict the use of elements. Thus, logical constructs can be

less accurate or can be ignored entirely during modeling. It is even

possible to (ad hoc) break the process modeling frame and incorporate

different concepts into the model for discussion.

During process modeling workshops a process analyst is enlisted to

explain process modeling and to guide the group through the workshop.

Instead of filtering and translating input from different stakeholders, the

analyst becomes a facilitator of the group’s internal consensus finding.

This enables an integration of human, social interaction into process

design. Now multiple people work together at the same model which is

laid out at a table top. They can immediately point at, touch and change

the model to demonstrate ideas. The shared common knowledge is

represented at the table in tangible media. We therefore call this approach

t.BPM, tangible business process modeling.

Figure 3 depicts t.BPM in the framework of media models. Traditional

Business Process Modeling software allows for different levels of

granularity. A range of simple to technically sophisticated representations

can be contained in one model. The resolution of each piece of

information however is typically high. By contrast, t.BPM can only

embody a limited set of information at a time, but through more or less

accurate use of the process modeling concepts, the resolution might vary.

In comparison to figure 1, please note that these are relative measures.

We conducted first user studies with t.BPM in 2009 (see figure 4, middle).

As predicted by the media-models theory, we observed people to question

the overall design of the process more often. Global changes were

acceptable with easily changeable media. We also found that the absence

of computers for process modeling narrowed the gap between modeling

experts and novices. Only a few concepts have to be explained before the

modeling can start. Application specific knowledge is not needed as the

tool is intuitive to use.

In a Case Study conducted in a hospital environment (see figure 4, right)

we also observed a flexible abstraction level for t.BPM as a tool. A five day

workshop with hospital doctors on clinical pathway modeling (processes

in hospitals) started with rough mapping and became a detailed and

sophisticated model for discussion over time. The workshop was

facilitated by an experienced BPM consultant, who used t.BPM with only a

few concepts as a minimal ground for information sharing.

Figure 3. How t.BPM changed process modeling in the light of the media models

framework

Over time the BPM facilitator introduced more concepts when needed,

and when discussions focused on details of the models. On day three,

t.BPM was complemented with other media such as software modeling

tools and print-outs. Our analysis of the workshop showed that software-

based process modeling media is more suited for navigating through large

sets of process models than t.BPM. However, when creating new models,

discussions genuinely turned back to the table with t.BPM.

 4. Design Thinking Transformation
Framework

The insights and experience we gained during iterating and testing t.BPM

led us to identify some core qualities that we believe are key for

transforming analytical convergence tools into abductive divergence tools.

Therefore, based on our roughly twenty prototypes we would like to

suggest a Design Thinking Transformation Framework consisting of the

following four qualities:

Q1 Iterative Creation Cycles

As depicted in figure 1, we identify five major development stages:

problem definition, need finding & specifications, ideation, development,

deployment/testing. The classical analytical process goes through those

five stages once. Iterative approaches in analytical disciplines, e.g. in

software engineering, propagate iterations by slicing the problem into

small pieces and solving one piece within one iteration. This is what we

call "iterative refinement cycles". Parts or details are determined

iteratively. Fundamental, underlying ideas are not questioned.

Figure 4. Software Modeling tools (left), t.BPM first user studies (middle), t.BPM field

study with hospital processes (right)

In contrast, Design Thinking suggests to iteratively create new solution

ideas. Inexpensive prototypes are key enablers to explore the solution

space by trying out many different ideas. This is what we call "iterative

creation cycles". In t.BPM, easily movable elements enable fast

prototyping of ideas.

Q2 Human Integration in Design

In both product and software development ambiguous, informal human

needs are transformed into formal requirements to be used in analytical

reasoning. Therefore, analytical disciplines tend to limit the user

interaction in order to reduce ambiguity and uncertainty in the analytical

process. Users present needs to developers, who in turn present well

crafted solutions to users.

Design Thinking calls for repeated, physical integration of stakeholders in

the design and ideation phase. This is not only helpful to get instant

feedback on ideas. Integrating users into the design process makes them

engaged and advocates for the solution they helped design. Often,

members of the user community can help promote new solutions, get

them accepted and avoid resistance to adoption.

Q3 Suitability for Heterogeneity

A high degree of specialization leads to a strong fragmentation of

knowledge. The more sophisticated the discipline, the stronger the

fragmentation, even within disciplines. Sophisticated models that are

used in those disciplines for detailed discussions and deep reasoning are

not well suited for the incorporation of heterogeneous knowledge bases.

Design thinking works with interdisciplinary teams by using simple

visualization and prototyping techniques to transport ideas and integrate

knowledge from stakeholders with heterogeneous background. As a rule

of thumb, the further apart the disciplines, the simpler the models that

they can use to share and integrate information. By 'simple' we mean the

amount of concepts required to understand the model. As an example, in

t.BPM we condense the BPMN standard (OMG 2009) to the basic

concepts of control flow, data and resource allocation. This is embodied in

four shapes and markings drawn on the table.

Q4 Media Accessibility

Typically, in analytical disciplines, solution designs are digital throughout.

Advantages such as versioning, computer-assisted analysis and easy

distribution have outweighed advantages of physical representations.

Really?

Design Thinking research suggests that each instantiation of media

affords particular types of interactions and changes to a designed solution.

This happens because the media-model dimensions (abstraction,

resolution, ease of change) define the interaction space in which people

can define their solution. We learned with t.BPM, that tangible media

removes barriers for participation. No expert knowledge is required to

handle the media. This enables people to change the models, and

therefore the solution themselves.

Framework Applied

We now propose an early stage framework based on the four qualities that

can be used to identify the level of Design Thinking factored into existing

tools. We test it by using common conceptual modeling approaches from

software engineering.

We assume as working hypothesis that, for any software development

tool, this Design Thinking Transformation framework allows us to judge

its closeness to divergent Design Thinking vs. its closeness to convergent

analytical thinking. To test this hypothesis we have selected four standard

analytical modeling techniques from software development. We choose:

• Data Modeling, often done with Entity-Relationship Diagrams

(Chen 1976), is used to represent information objects (e.g. dog),

their attributes (e.g. age) and relation to other information

artifacts (e.g. is owned by). It is used to specify database schemas.

• Use Case Modeling, part of UML (Fowler & Scott 2000), is used

to depict roles (dog owner), their applications (e.g. go for walk)

and dependencies between applications (e.g. go for walk requires

find leash). It is used to visualize complex application scenarios.

• Object Oriented Modeling, also part of UML (Fowler & Scott

2000), describes classes of objects (e.g. dogs) with attributes (eg.

age), behavior (e.g. bite, sit) and interrelation to other classes of

objects (e.g. has owner of type human). It is used to model the

structure of object oriented programs.

• Classical process modeling (Scheer et al. 2005; OMG

2009)depicts steps (go for walk) their interdependencies (e.g.

find leash before going for a walk), responsibilities (owner has to

find leash) and data used in the process (e.g. newspaper to read

in the park). Process modeling is used for analysis, simulation

and automation of working procedures, business processes.

All these modeling approaches were developed in the IT community and

are software supported. In t.BPM we use the idea of classical process

modeling. We transform a tool's media, from software to tangible, we

involve the stakeholders in an iterative creation process and we simplify

the notational system. Thus, we can integrate more people with

heterogeneous knowledge bases into the creation of the solution.

In the following section, we rate the software development tools for their

Design Thinkingness, and therefore the effort required for

transformation. We rate according to industry’s best practices which

implies that individual applications of the tools might differ from our

assumptions. We rate with a (-) if current practice is contrary to proposed

Design Thinking practice. We rate (o) if it is not in line but aspects point

into the right direction. And we use (+) if it is in line with the Design-

Thinking-Way that this aspect is practiced.

We rate classical modeling tools with (-) for Q1 as they rely on software

support to visualize their concepts. Software tools in this area afford

iteration for refinement but not iteration for creation. For Q2 we rate (o) if

users in practice typically provide feedback to intermediate solutions,

otherwise (-). A (+) is given only if customers are actively participating in

the design process.

Table 1. Design Thinking Transformation Framework applied to Software Modeling

Techniques

For Q3 we rate (+) if concepts can easily be understood and adopted with

little introduction time. We rate (o) if the representation is simple enough

to be read and mainly understood without expert knowledge. We rate (-) if

it requires expertise and experience to read the model and understand the

implications. For Q4, we rate (o) if only experts can create models and

others can only make comments, e.g. on printouts. t.BPM here scores (+)

as it allows non-experts to apply changes.

We note that no classical tool is purely analytical. Nonetheless, no classic

tool or method is truly an abductive, divergent tool in the sense of Design

Thinking tools.

At the present time, we have not developed proper scales for the qualities

proposed. However, the framework has enabled us to identify and to

separate the very classical convergent analytical software tools from other

tools that have incorporated some Design Thinking rules.

Indeed, as we have shown with the creation of t.BPM from classical

process modeling, it is possible to transform an analytical tool into an

abduction divergence tool. The framework at hand provides us with four

fundamental questions as a starting point for the transformation:

1. How to incorporate rapid prototyping and iterate for the creation

of new ideas rather than refinements?

2. How to ensure the continuous integration of the user and his

participation in the design process?

3. Which concepts are required for communication in order to

establish a model for shared understanding amongst participants

with heterogeneous background?

4. How to choose media to support questions 1,2,3 and realize

media accessibility?

Although we currently only have one, though very successful example, we

believe that the same approach may be used for other software

engineering tools, to judge their level of Design Thinking and to identify

starting point for a possible transformation. We would like to call our

framework Design Thinking Transformation Framework (DTTF) and,

with this paper, put it forward for discussion.

 5. Discussion and Future Research
We have proposed the Design Thinking Transformation Framework.

DTTF consists of four qualities: Iterative Creation Cycles, Human

Integration in Design, Suitability for Heterogeneity and Media

Accessibility.

The DTTF is grounded in years of Design Thinking Research on media

and the insights gained from transforming classical business process

modeling into t.BPM. We have used the DTTF to assess different software

modeling tools. However, we believe that this DTTF is not limited to

contrasting Design Thinking with Computer Science.

We invite other researchers to use this Design Thinking Transformation

Framework for other disciplines and show applicability and shortcomings.

For our future research, we aim to develop mature scales to measure the

Design-Thinkingness of tools with respect to the qualities described in

this paper.

 References

van der Aalst, W.M., Hofstede, A.H. & Weske, M. (2003) Business process

management: A survey. Lecture Notes in Computer Science Vol.2678, 1–12.

Blackwell, A.F., Britton, C., Cox,A., Green,T.R.G., Gurr, C., Kododa,G. Kutar,

M.S., Loomes, M., Nehaniv, C.L., Petre, M. & others (2001) Cognitive

dimensions of notations: Design tools for cognitive technology. Lecture Notes

in Computer Science Vol.2117, 325–341.

Boehm, B.W. (1981) Software engineering economics, Prentice Hall.

Brooks, F.P. (1975) The Mythical Man Month: Essays on Software

Engineering, 2/e, Pearson Education.

Burlton, R.T. (2001) Business process management, Sams.

Buxton, W. (2007) Sketching user experiences: getting the design right and

the right design, Morgan Kaufmann.

Chen, P.P. (1976) The entity-relationship model—toward a unified view of

data. ACM Transactions on Database Systems (TODS), Vol. 1, p 36.

Clark, A. (2008) Supersizing the mind: Embodiment, action, and cognitive

extension, Oxford University Press, USA.

Clements, P. & Northrop, L. (2001). Software product lines, Addison-Wesley

Reading MA.

Davenport, T.H. (1993) Process innovation: reengineering work through

information technology, Harvard Business School Press.

Edelman, J., Grosskopf, A. & Weske, M. (2009) Tangible Business Process

Modeling: A New Approach. In Proceedings of the 17th International

Conference on Engineering Design, ICED'09.

Edelman, J. (2009) Hidden in Plain Sight: Affordances of Shared Models in

Team Based Design. In Proceedings of the 17th International Conference on

Engineering Design, ICED'09.

Fowler, M. & Scott, K. (2000) UML distilled: a brief guide to the standard

object modeling language, Addison-Wesley Longman Publishing Co., Inc.

Boston, MA, USA.

Grosskopf, A., Edelman, J. & Weske, M. (2009). Tangible Business Process

Modeling - Methodology and Experiment Design. 1st International Workshop

on Empirical Research in Business Process Management (ER-BPM'09). Ulm,

Germany: Springer Verlag, p. 53-64.

Hammer, M. & Champy, J. (2003) Reengineering the corporation: A

manifesto for business revolution, Collins Business.

Krallmann, H., Schönherr, M. & Trier, M. (2007) Systemanalyse im

Unternehmen, Oldenbourg Verlag.

Leifer, L.J. & Meinel, C. (2010) The Philosophy behind Design, Springer

Lindberg, T. & Meinel, C. (2010) Design Thinking in IT Development?

Available at: http://ecdtr.hpi-web.de/report/2010/001/.

Maglio, P.P., Matlock, T., Raphaely, D. Chernicky ,B. & Kirsch, D. (1999)

Interactive skill in Scrabble. In Proceedings of the Twenty-First Annual

Conference of the Cognitive Science Society, 1999, Simon Fraser University,

Vancouver, British Columbia. p 326.

Martin, R.C. (2003) Agile software development: principles, patterns, and

practices, Prentice Hall PTR Upper Saddle River, NJ, USA.

OMG (2009) Business Process Modeling Notation (BPMN) 1.2, OMG.

Scheer, A.W., Thomas, O. & Adam, O. (2005) Process modeling using event-

driven process chains. Process-aware information systems: bridging people

and software through process technology, 119–145.

Tversky, B. (1999) What does drawing reveal about thinking. In Visual and

spatial reasoning in design. S. 93–101.

Zhu, H. (2005) Software design methodology, Butterworth-Heinemann.

